Motivation	Problematic	Related work	Objectif	Sinefitting	Results	Conclusion
0	00000	00000	0	000	0000	

Sinefitting : Robust Curvature Estimator On Surface Triangulation

Lérôme Charton, Stefka Gueorguieva, Pascal Desbarats

LaBRI

Université Bordeaux 1

Motivation	Problematic	Related work	Objectif	Sinefitting	Results	Conclusion
•	00000	00000	0	000	0000	00

To obtain a surface variation descriptor on unstructured data.

Motivation	Problematic	Related work	Objectif	Sinefitting	Results	Conclusion
	00000					
Presentation						

Curvature estimation methods generally divided into two parts:

- Normal estimation
- Curvature tensor estimation itself

Motivation	Problematic	Related work	Objectif	Sinefitting	Results	Conclusion
	00000					
Presentation						

Curvature estimation methods generally divided into two parts:

- Normal estimation
- Curvature tensor estimation itself

For the evaluation of the curvature estimators we use 3 criterions :

- Pointwise Convergence
- Precision
- Robustness

Motivation	Problematic	Related work	Objectif	Sinefitting	Results	Conclusion
	00000					
Theoretical base						

Notations 1/2 (Neighborhood & plane section)

- P: target
- *P_i*: neighbors
- \vec{N} : normal of the surface at P
- \vec{T}_i : tangent of C_i at P
- $\vec{n_i}$: normal of C_i at P
- k_i : curvature of C_i at P

Motivation	Problematic	Related work	Objectif	Sinefitting	Results	Conclusion
	00000					
Theoretical base						

Notations 2/2 (Principal directions & curvatures)

• $k_{max} \& k_{min}$: maximal and mininal curvatures • K_H : Mean curvature: $K_H = (k_{max} + k_{min})/2$ • K_G : Gaussian curvature: $K_G = k_{max} * k_{min}$ • $T_{max} \& T_{min}$: respectively $k_{max} \& k_{min}$ directions • θ_i : angle between T_{max} and \vec{T}_i

Motivation	Problematic	Related work	Objectif	Sinefitting	Results	Conclusion
	00000					
Theoretical base						

Euler theorem

 $k_i = k_{max} \cos^2(\theta_i) + k_{min} \sin^2(\theta_i)$ (1)

Motivation	Problematic	Related work	Objectif	Sinefitting	Results	Conclusion
	00000					
Theoretical base						

Meusnier theorem

$$k_i = k.cos(\beta) \tag{2}$$

Where β is the angle between \vec{n} and \vec{N} and k is the curvature of C at the point P

²Illustration extracted from Chen and Schmitt book [CS92]

Motivation	Problematic	Related work	Objectif	Sinefitting	Results	Conclusion
		00000				
Classification						

We can classify curvature estimators in three classes:

- Averaging methods (Meyer's et al. method [MMB02] (SDA))
- Surface fitting methods (Mc Ivor's et al. method [MW97] (SQFA))
- Curve fitting methods (Chen's, Taubin's and Langer's methods)

Motivation	Problematic	Related work	Objectif	Sinefitting	Results	Conclusion
	00000	00000		000	0000	00
Averaging method	ds					
Mayor		1R001 (an	۸)			

DR

Angle weighted area or Voronoï area around vertex ${\it P}$ in grey This method just computes K and H

ישועו

Motivation 0	Problematic 00000	Related work ○●○○○	Objectif 0	Sinefitting 000	Results 0000	Conclusion
Averaging method	ds					
Meyer e	t al. [MN	/IB02] (SD/	A)			

Weakness of this method:

³Illustration extracted from Bac et al. [BDM05]

() () () (<u>)</u> (<u>)</u> (<u>)</u>

Motivation O	Problematic 00000	Related work ○○●○○	Objectif O	Sinefitting 000	Results 0000	Conclusion 00
Surface fitting m	ethods					
Mc Ivor	et al. [MW97]: Sin	nple Qua	adratic Fi	tting (S	QFA)

Consists in solving an equation like eq.(3) by using the spatial coordinates of each P_i

$$z = ax^2 + by^2 + cxy \tag{3}$$

Is an overdetermined system usually solved by least squares.

Researched values are obtained by using the coefficients.

Motivation	Problematic	Related work	Objectif	Sinefitting	Results	Conclusion	
		00000					
Surface fitting methods							

Mc Ivor et al. [MW97]: Simple Quadratic Fitting (SQFA)

Weakness of this method:

Highly sensitive to the distrubution of the neighborhood.

Motivation	Problematic	Related work	Objectif	Sinefitting	Results	Conclusion
		00000				
Curve fitting m	ethods					
Chen 8	Smith [C	·S021				

- Find the most opposite triplets
- Compute k for each circle fitted over each choosen triplet
- Use the Meusnier theorem to evaluate the k_i
- Finally, fit a transformed equation of the Euler theorem.

⁴Illustration extracted from Chen and Schmitt book [CS92]

Motivation 0	Problematic 00000	Related work ○○○●○	Objectif O	Sinefitting 000	Results 0000	Conclusion 00
Curve fitting m	ethods					
Chen &	2 Smith IC	CS921				

Weakness of this method:

Motivation 0	Problematic 00000	Related work ○○○○●	Objectif 0	Sinefitting 000	Results 0000	Conclusion
Curve fitting me	ethods					
Tauhin	[TFA95] ;	and Lange	r [I BS07	7]		

Firstly: both methods compute k_i as $k_i \approx \frac{2\vec{N}^t(\vec{PP_i})}{||\vec{PP_i}||^2}$ Secondly:

- Taubin gives a matricial system representation of the curvature tensor.
- Whereas Langer evaluate the curvature as two integrals modeling K_H and K_G .

Motivation	Problematic	Related work	Objectif	Sinefitting	Results	Conclusion		
		00000						
Curve fitting methods								

Taubin [TFA95] and Langer [LBS07]

Weakness of this methods:

Taubin K_G estimationLanger K_G estimationTaubin is imprecise and Langer has occasional errors

Motivation	Problematic	Related work	Objectif	Sinefitting	Results	Conclusion
0	00000	00000	•	000	0000	

All this curvature estimators present dysfunctions

Can we find a new curvature estimator less sensitive to neighborhood geometry ?

Motivation	Problematic	Related work	Objectif	Sinefitting	Results	Conclusion
				000		
Algorithm						

The SineFitting algorithm is composed of two steps

- Evaluation of k_i as in Taubin and Langer algorithms by circle fitting.
- Fitting a transformed equation of Euler theorem as in Chen algorithm but without using Meunsier theorem.

(Recall Euler equation) $k_i = k_{max} cos^2(\theta_i) + k_{min} sin^2(\theta_i)$

Motivation	Problematic	Related work	Objectif	Sinefitting	Results	Conclusion
				000		
k_i evaluations						

Motivation	Problematic	Related work	Objectif	Sinefitting	Results	Conclusion
0	00000	00000	0	○○●	0000	00
Sinewave fitting →						

 T_{max} is unknown, so θ_i cannot be directly computed. Let φ an angle such that $\theta_i = \alpha_i + \varphi$, where $\alpha_i = \angle(\vec{T_0}, \vec{T_i})$

Euler equation is rewritten as:

$$k_i = k_{max} \cos^2(\alpha_i + \varphi) + k_{min} \sin^2(\alpha_i + \varphi)$$

• • •

Motivation	Problematic	Related work	Objectif	Sinefitting	Results	Conclusion
	00000	00000		000	0000	00
Sinewave fitting						

 T_{max} is unknown, so θ_i cannot be directly computed. Let φ an angle such that $\theta_i = \alpha_i + \varphi$, where $\alpha_i = \angle(\vec{T_0}, \vec{T_i})$

Euler equation is rewritten as:

$$k_i = k_{max} \cos^2(\alpha_i + \varphi) + k_{min} \sin^2(\alpha_i + \varphi)$$
...

where (if a > 0 for example),

$$arphi=-rac{ au an^{-1}(rac{b}{a})}{2},$$
 $k_{max}=c+\sqrt{a^2+b^2},$ $k_{min}=c-\sqrt{a^2+b^2}$

Different convergent discretisation methods of mathematical surfaces. Called NeighborDealers

Motivation	Problematic	Related work	Objectif	Sinefitting	Results	Conclusion
					0000	
Precision						

Motivation	Problematic	Related work	Objectif	Sinefitting	Results	Conclusion
					0000	
Robustness						

Mean curvature evaluation based on theoretical and area-weighted normal

Motivation	Problematic	Related work	Objectif	Sinefitting	Results	Conclusion
						•0

Conclusion:

- According to the performed tests, Sinefitting is not always the most accurate method, but is far more stable.
- It is easy to implement.

Perspectives:

- Test robustness on noised data following perturbations of Gatzke [GG06].
- Experiment on point cloud.

Future work:

• We will try to use the same intuition for the normal estimator.

Motivation	Problematic	Related work	Objectif	Sinefitting	Results	Conclusion
						00

Thank you for listening

jerome.charton@labri.fr

Experiment platform: http://smithdr.labri.fr/

All results are available on:

http://dept-info.labri.fr/~ charton/curvature_analysis/

Motivation 0	Problematic 00000	Related work	Objectif O	Sinefitting 000	Results 0000	Conclusion O	
	A. Bac, M. Daniel, and J-L. Maltret.						
	3d modeling and segmentation with discrete curvatures. Journal of Medical Informatics and Technology, 9:13–24, 2005.						
	X. Chen and F. Schmi	tt.					
_	Intrinsic Surface Properties from Surface Triangulation. Télécom Paris, D. École Nationale Supérieure des Télécommunications, 1992.						
	Timothy D. Gatzke an	d Cindy M. Grimm.					
	Bernd Hamann						
	Visualization and Modeling of Contours of Trivariate Functions. between January and May 1991.						
	Torsten Langer, Alexa	nder Belvaev, and Hans	-Peter Seidel.				
	Exact and interpolatory quadratures for curvature tensor estimation.						
	Peter Schrüder Mark M	/leyer, Mathieu Desbru	n and Alan H. Ba	rr.			
	Discrete differential-ge VisMath, 2002.	ometry operators for tr	riangulated 2-man	ifolds.			
	Alan M. McIvor and P	eter T. Waltenberg.					
	Recognition of simple	curved surfaces from 3	d surface data, 19				
	Gabriel Taubin, Surfac	e From, and A Polyhed					
	Estimating the tensor	of curvature of a surfac	ce from a polyhed	ral approximation, 19	95.		
						iadis	