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To obtain a surface variation descriptor on unstructured data.

1

Point Cloud

1Acquilon scanner of Kreon
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Presentation

Curvature estimation methods generally divided into two parts:

Normal estimation

Curvature tensor estimation itself

For the evaluation of the curvature estimators we use 3 criterions :

Pointwise Convergence

Precision

Robustness
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Theoretical base

Notations 1/2 (Neighborhood & plane section)

~ni

Ci P

Pi

Ci is the normal section
containing Pi

P: target

Pi : neighbors
~N: normal of the surface at P

~Ti : tangent of Ci at P

~ni : normal of Ci at P

ki : curvature of Ci at P
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Theoretical base

Notations 2/2 (Principal directions & curvatures)

rc

pi

p ~Tmax

~Tmin
~Ti θi

kmax&kmin: maximal and mininal curvatures

KH : Mean curvature: KH = (kmax + kmin)/2

KG : Gaussian curvature: KG = kmax ∗ kmin
~Tmax& ~Tmin: respectively kmax&kmin directions

θi : angle between ~Tmax and ~Ti
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Theoretical base

Euler theorem

ki = kmaxcos
2(θi ) + kminsin

2(θi ) (1)
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Theoretical base

Meusnier theorem

2

ki = k.cos(β) (2)

Where β is the angle between ~n and ~N
and k is the curvature of C at the point P

2Illustration extracted from Chen and Schmitt book [CS92]
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Classification

We can classify curvature estimators in three classes:

Averaging methods (Meyer’s et al. method [MMB02] (SDA))

Surface fitting methods (Mc Ivor’s et al. method [MW97]
(SQFA))

Curve fitting methods (Chen’s, Taubin’s and Langer’s
methods)
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Averaging methods

Meyer et al. [MMB02] (SDA)

3

Angle weighted area or Voronöı area around vertex P in grey
This method just computes K and H

3Illustration extracted from Bac et al. [BDM05]
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Averaging methods

Meyer et al. [MMB02] (SDA)

Weakness of this method:

3

3Illustration extracted from Bac et al. [BDM05]
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Surface fitting methods

Mc Ivor et al. [MW97]: Simple Quadratic Fitting (SQFA)

Consists in solving an equation like eq.(3) by using the spatial
coordinates of each Pi

z = ax2 + by2 + cxy (3)

Is an overdetermined system usually solved by least squares.

Researched values are obtained by using the coefficients.
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Surface fitting methods

Mc Ivor et al. [MW97]: Simple Quadratic Fitting (SQFA)

Weakness of this method:

Highly sensitive to the distrubution of the neighborhood.
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Curve fitting methods

Chen & Smith [CS92]

4

1 Find the most opposite triplets

2 Compute k for each circle fitted over each choosen triplet

3 Use the Meusnier theorem to evaluate the ki
4 Finally, fit a transformed equation of the Euler theorem.

4Illustration extracted from Chen and Schmitt book [CS92]
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Curve fitting methods

Chen & Smith [CS92]

Weakness of this method:

Theoretical curvature Chen KG estimation

Local instabilities at saddle point and low curvature.
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Curve fitting methods

Taubin [TFA95] and Langer [LBS07]

Firstly: both methods compute ki as ki ≈ 2~Nt( ~PPi )

|| ~PPi ||2
Secondly:

Taubin gives a matricial system representation of the
curvature tensor.

Whereas Langer evaluate the curvature as two integrals
modeling KH and KG .
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Curve fitting methods

Taubin [TFA95] and Langer [LBS07]

Weakness of this methods:

Taubin KG estimation Langer KG estimation

Taubin is imprecise and Langer has occasional errors

11 / 21



Motivation Problematic Related work Objectif Sinefitting Results Conclusion

All this curvature estimators present dysfunctions

Can we find a new curvature estimator less sensitive to
neighborhood geometry ?
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Algorithm

The SineFitting algorithm is composed of two steps

1 Evaluation of ki as in Taubin and Langer algorithms by circle
fitting.

2 Fitting a transformed equation of Euler theorem as in Chen
algorithm but without using Meunsier theorem.

(Recall Euler equation) ki = kmaxcos
2(θi ) + kminsin

2(θi )
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ki evaluations

~N

P

ψ

Piψ

O

H

M

Known data

cosψ = || ~PH||
|| ~PPi ||

= || ~MPi ||
|| ~OPi ||

; ...; || ~OPi || = ri = |12 .
|| ~PPi ||2
~PPi .~N
|; ki = 2.

~PPi .~N

|| ~PPi ||2
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Sinewave fitting

~Tmax is unknown, so θi cannot be directly computed.
Let ϕ an angle such that θi = αi + ϕ, where αi = ∠( ~T0, ~Ti )

Euler equation is rewritten as:

ki = kmax cos2(αi + ϕ) + kmin sin2(αi + ϕ)
...

ki = a cos(2αi ) + b sin(2αi ) + c

where (if a > 0 for example),

ϕ = − tan−1( b
a

)

2 , kmax = c +
√
a2 + b2, kmin = c −

√
a2 + b2
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Experimentation

Hamann’s discretization surface for robustness [Ham91]

Different convergent discretisation methods of mathematical
surfaces. Called NeighborDealers
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Pointwise convergence
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Precision

SDA Taubin Chen

SineFitting SQFA Langer
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Robustness
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Conclusion:

According to the performed tests, Sinefitting is not always
the most accurate method, but is far more stable.

It is easy to implement.

Perspectives:

Test robustness on noised data following perturbations of
Gatzke [GG06].

Experiment on point cloud.

Future work:

We will try to use the same intuition for the normal estimator.
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Thank you for listening

jerome.charton@labri.fr

Experiment platform: http://smithdr.labri.fr/

All results are available on:

http://dept-info.labri.fr/∼ charton/curvature analysis/
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