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Boolean operations between two colliding shells:  

a robust, exact, and simple method 

 

 

Abstract 

Boolean operations are classic procedures in computer-aided design, and allow the creation of complex objects 

by combining simple objects. Although Boolean operations are trivial in implicit surface representations, they 

are problematic in polygonal meshes. Methods that directly use meshes to compute Boolean operations 

consistently consider the intersections between two faces without taking into account coplanar collisions. Thus, 

they either perturb the input meshes when colliding faces are coplanar or simply ignore this kind of collision. 

Most existing approaches for Boolean operations convert input meshes to volumetric representations such as 

binary space partitioning (BSP) and voxel grids. The output mesh is obtained by remeshing the resulting 

volumetric model. We propose a robust, exact, and simple method to manage Boolean operations between 

colliding shells without conversion and use a pure surface approach. The proposed method consists of three 

steps: (1) Calculating the intersections of input shells for both non-coplanar and coplanar collisions, (2) 

Decomposing the whole new mesh into its manifold components, and (3) Preserving only the components related 

to the requested operation (union or intersection). Subtraction operations are considered by reversing the surface 

orientation of the subtracted shell using the intersection operation. The output preserves the exact geometry of 

the input mesh while adding vertices for the remeshed colliding faces. In comparison with existing methods that 

use the mesh directly, the main advantage of the proposed method is that it processes coplanar collisions without 

geometrical modification, which avoids creating many small shells when two objects share the same part of the 

surface. Compared with methods using volumetric representation, the proposed method is faster and does not 

require input meshes without a boundary. We demonstrated the effectiveness of our method using synthetic 

models and real-world objects. 

Keywords : Polygonal mesh, Triangular mesh, Boolean operations  

 

1. Introduction 

 

Boolean operations, used in constructive solid geometry (CSG) to create complex shapes from simple ones or to fit 

the interlocking between two objects, are composed of an elementary set of operations such as union, intersection, 

differences, and symmetric difference. Boolean operations are essential tools in computer-aided design (CAD) and have 

a long history in research (Requicha and Voelcker, 1985). Boolean operations have been used in mechanical design to 

model the operations of extrusion and combination for many years. Lately, constructive solid geometry is widely used. 

Commonly used in 3D animation and video game design, more recently, the expanded use of 3D printers has given rise 

to multiple applications (e.g., rapid prototyping and virtual surgery planning). In the case of rapid prototyping, the classic 

way to create a virtual object, with the aim of printing it, is to use a modeller such as Blender and create the object by 

using a juxtaposition of primitive shapes. However, this approach to construction without operating the union between 

colliding shells can cause problems during the slicing of the 3D printing process (e.g., local confusion of inside/outside 

or laminating of the object in coplanar collisions). Virtual surgery planning is a technique that uses surface reconstruction 

of patient data to simulate bone surgery. This planning is achieved by the 3D printing of virtual guides, which are created 

using synthetic objects interlocked with the bone surface using the difference operator (Laurentjoye et al., 2014). The 
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acquisition of a “real” object can usually be realized in two main ways. The first, essentially practiced in the medical 

field, is volumetric acquisition. The reconstructed data resulting from volumetric acquisition is a voxel grid that can be 

used to extract a mesh representation of the targeted surface. The second is the acquisition of a 3D laser scan. Using a 

laser line projection, a sampling of the surface of an object is acquired. The mesh of the surface is built by adding 

polygons based on the sampling. When volumetric acquisition allows a full closed surface of the acquired data to be 

created, the 3D laser scan can frequently only acquire a partial surface by creating a mesh with boundaries.  

However, existing methods based on Boolean operations require input meshes without a boundary. The principle 

reason is that they use the volumetric properties of the input boundary representations. This paper presents a method for 

processing Boolean operations between two colliding shells (not only punctually) without constraint of closure or 3-

manifoldness on the input meshes.  

 

2. Related work & positioning 

 

Although Boolean operations are trivial in terms of implicit surfaces or other volumetric representations, they are 

challenging in relation to polygonal meshes. In fact, the polygonal mesh model provides more topological possibilities 

than the surface of a volume, including especially non-3-manifolds and/or 2-manifolds with boundaries. Thus, the 

common way to obtain a robust Boolean operation between two polygonal meshes involves a conversion (complete or 

partial) of these surface representations to volumetric representations (e.g., binary space partitioning (BSP) (Thibault and 

Naylor, 1987), voxel grid) (Granados et al., 2003) (Chen, 2007) (Bernstein and Fussell, 2009) (Campen and Kobbelt, 

2010) (Hachenberger and Kettner, 2016). However, these representations are computationally inefficient, depend on 

parameters (e.g., the voxel size), or require input meshes without a boundary. The result of these methods is generally a 

remeshing of the volumetric representation after operation. 

Besides, the other approaches use the polygonal mesh data structure directly with a space partitioning tree 

(e.g., octree, kd-tree, bounding volume hierarchy (BVH)) as meta-structure to reach faces efficiently and define the 

inside/outside relation by ray tracing and parity counting (Bernstein, 2007) (Chen et al., 2010) (Feito et al., 2013), plane 

sweeping with a dynamic real tree (R-tree) (Schifko et al., 2010) or even, by using this meta structure to distinguish the 

inside and outside of each face or constraint component (Pavi et al., 2010) (Mei and Tipper, 2013). These methods are 

systematically composed of two phases. First, they compute and remesh intersections between input meshes, and second, 

they classify, in the merged mesh, triangles to remove and to preserve by using the closure property of the input meshes.  

This paper presents a method that falls within the second category (using the mesh directly). However, this method 

uses open and non-necessary 3-manifold shells that are colliding in more than one point. The requirements of the input 

shells are:  

 Each face of both input shells is consistently oriented. The front side is oriented to the outside and the 

backside to the inside.  

 Let 𝑒 be a non-boundary edge and B  be the maximal ball centred in the middle of 𝑒 and intersecting all 

adjacent faces of 𝑒  by one-half disk. Then all partitions of B, obtained by the intersection with 

neighbouring faces of 𝑒, can be classified as inside or outside of the object by the orientation of splitting 

faces (Fig. 1(b)).  

 The two input shells are colliding with at least one collision larger than a point (e.g. edge, face, and series 

of edges). 

The output of this method is a mesh composed of subsets of the components of the input shells with refinement of 

the colliding faces. The output mesh preserves the input topological singularities but converts geometrical singularities 

into topological ones, if there are any. 

As for almost all approaches using polygonal mesh directly, the proposed method is composed of two main steps. 

The first step consists of the creation of a copy of both input meshes in one indexed mesh without geometrical singularity. 

Intersections between shells are computed and remeshed in this step to convert these geometrical singularities into 

topological singularities. The second step, using a classification of faces in oriented manifold components (OMCs) and 

non-manifold edges in chains, determines for each component whether it should be preserved, reversed, or removed 

according to the expected Boolean operation. During this process, the operation can be aborted for non-consistence of 

the inside and outside. The operation can be aborted in the two steps. In the first step, if a bordering edge is strictly 

intersecting the inside of a face or a non-bordering edge, the inside/outside cannot be determined. In the second step, if 
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a manifold component has a multiple classification, the global operation is inconsistent.  

 

 

(a) Normal edge. (b) Singular edge with four adjacent faces. 

 

Fig. 1.  Examples of edges with consistent inside (green) / outside (blue) definition. 

 

As for almost all approaches using polygonal mesh directly, the proposed method is composed of two main steps. 

The first step consists of the creation of a copy of both input meshes in one indexed mesh without geometrical singularity. 

Intersections between shells are computed and remeshed in this step to convert these geometrical singularities into 

topological singularities. The second step, using a classification of faces in oriented manifold components (OMCs) and 

non-manifold edges in chains, determines for each component whether it should be preserved, reversed, or removed 

according to the expected Boolean operation. During this process, the operation can be aborted for non-consistence of 

the inside and outside. The operation can be aborted in the two steps. In the first step, if a bordering edge is strictly 

intersecting the inside of a face or a non-bordering edge, the inside/outside cannot be determined. In the second step, if 

a manifold component has a multiple classification, the global operation is inconsistent.  

 

3. Creation of the global mesh without geometrical singularity 

 

3.1. Removing duplicated entities and degenerated faces 

 

This first step starts by copying all the data of both inputs (𝐴 and 𝐵) in one indexed mesh termed 𝐶𝐼𝑛𝑖𝑡as adding a 

tag 𝜔𝐴  or 𝜔𝐵  to faces to preserve the information of their origin. 𝐶𝐼𝑛𝑖𝑡  is composed of shells with geometrical 

singularities which are self-intersections and potentially duplicated vertices and degenerated faces. In terms of 

implementation this indexed mesh is only composed of a table of vertex coordinates and a table of faces indexing the 

first table. The aim of this first step of the algorithm is to create a mesh containing geometrical information of inputs 𝐴 

and 𝐵 without geometrical singularity. The first geometrical singularities that can be directly managed are the duplicated 

vertices. This is achieved by sorting vertices in lexicographic order to bring the duplicated vertices closer. Using an ε 

value relative to the numerical precision, duplicate vertices can be merge with an ε Euclidean distance criteria. Note: two 

duplicated vertices do not necessarily occur side by side. ε has to be used for the Euclidean distance to determine the 

proximity but also on the x-, y- and z-coordinates independently to define the condition of stopping the search of 

duplicated vertices. During the sorting and merging processes, the vertex indices of faces should be maintained. This 

indexation is maintained by using a third table of double indexation between the coordinates of vertices and faces to 

operate the actual sorting and merging. If a face indexes the same vertex twice, this face is discarded. If two faces index 

the same set of vertices, only the one issued by 𝐴 is preserved. If the two faces have the same orientations the preserved 

face is tagged 𝜔𝐷  and 𝜔𝐶  otherwise. After this initial removing of geometrical duplications, two geometrical 

singularities remain: degenerated faces and self-intersections. Even if the merging of vertices can solve several 

degenerated faces due to close neighbours, the degenerated faces can remain because of the vertices almost lying on the 

opposite base. These degenerated faces can be processed through edge swapping or collapsing (Chong et al., 2007) 

(Attene, 2010) but only two faces with the same tag (𝜔𝐴, 𝜔𝐵 , 𝜔𝐶  or 𝜔𝐷) can be swapped. After removing duplicated 

vertices and degenerated faces, 𝐶𝐼𝑛𝑖𝑡 becomes 𝐶𝐼𝑛𝑖𝑡𝐶𝑙𝑒𝑎𝑛𝑒𝑑 .  
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3.2. Remeshing intersections 

 

The remeshing of (self-)intersections is separated into two steps. The first step is the computation of the segments of 

intersections and the second step, using the set of segments of intersections of each face, refines the face to incorporate 

these segments as edges in the mesh structure.  

Computing intersections. For 𝐶𝐼𝑛𝑖𝑡𝐶𝑙𝑒𝑎𝑛𝑒𝑑 , the remaining geometrical singularities are due to intersections between 

faces. A fast computation of the intersections is performed by building two sets of faces 𝐹𝐴 and 𝐹𝐵, where 𝐹𝐴 and 𝐹𝐵 

contain faces inherited from 𝐴  and 𝐵 , respectively, and wherein the bounding box of each face intersects the 

intersection of the bounding boxes of 𝐴 and 𝐵 (known as the common bounding box). Without loss of generality, 

suppose that |𝐹𝐴|  <  |𝐹𝐵|. Using only the faces of 𝐹𝐴, a BVH structure is built (Hapala et al., 2011). The BVH is queried 

by using the faces of 𝐹𝐵. This performs a fast and small space partitioning to reach all potential collisions between the 

faces of 𝐴 and those of 𝐵. The intersection between two faces 𝑓𝐴 and 𝑓𝐵 can be classified in two categories: coplanar 

and non-coplanar. If 𝑓𝐴 and 𝑓𝐵 are non-coplanar, the intersection is a segment that is potentially null (Fig. 2(a)). We 

computed this collision using the method proposed by (Möller, 1997). An initial test consists of checking if all vertices 

of 𝑓𝐴  are on the same side of the plane of 𝑓𝐵 . In this case, there is no collision. After this, the two segments of 

intersection between 𝑓𝐴 and the plane of 𝑓𝐵 are computed and vice versa. These two segments are aligned and their 

collision, if any, is the actual collision. For coplanar collisions, this problem is actually a two-dimensional problem and 

can be performed by testing collisions between all edges of 𝑓𝐴  with all edges of 𝑓𝐵  (Antonio, 1992). During this 

procedure, for all edges in the intersection, we create a vertex and keep the relation between this vertex and the edge. 

Before the creation of a vertex, we check if the edge(s) is (are) not already associated with a vertex at the intersection 

point. If the intersection point is related to one and only one bordering edge, the process stops and reports the impossibility 

to operate a Boolean operation with the input data. 

  

(a) The two shells (𝐴 in blue and 𝐵 in red) are colliding. 

The yellow dotted line draws the intersection line. 

(b) After computation and remeshing of intersections, we 

obtain a new mesh 𝐶. 𝐶 can be decomposed into oriented 

manifold components (OMCs) rendered in different colours. 

  

Fig. 2.  Simple example of intersection between two shells. 

 

Refinement of the mesh to integrate the intersections. After the computation of all intersections, we obtain a set 

of colliding faces 𝐹∗ , with a set of segments (potentially null) for each face, and a set of edges involved in the 

intersections 𝐸∗. If we are working with non-exact arithmetic, some faces that are actually colliding at the edge can be 

missing in 𝐹∗ due to the ε-precision. We correct this by adding all adjacent faces to an edge of 𝐸∗ missing in 𝐹∗. All 

faces of 𝐹∗ have to be subdivided to integrate the segment inside the mesh structure. The integration of the segments of 

intersections in a triangle is a two-dimensional problem. It can be processed by a constraint Delaunay triangulation 

(Shewchuk, 1997). Nevertheless, the common way to embed a three-dimensional planar polygon in a two-dimensional 

space consists of the removal of one of its coordinates using the maximal coefficient of the normal vector. This technique 

is easy and fast; it can generate a degenerated triangle in the two-dimensional space if we are working with non-exact 
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arithmetic. Let (𝑒0, 𝑒1)  be the plane of the orthogonal projection, where {𝑒0, 𝑒1}  ⊂  {𝑥, 𝑦, 𝑧}  and let 𝑒2  be the 

complementary. The projection of the face in the two-dimensional space contracts the triangle with different factors in 

𝑒0 and 𝑒1. These factors are relative to the angles (𝛼0 and 𝛼1) of the face in the planes (𝑒0, 𝑒2) and (𝑒1, 𝑒2) (Fig. 3). 

Preservation of the geometry of the face in this embedding requires the coordinates of each vertex 𝑣 =  (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧)
𝑇
 to 

be dilated to compute its image 𝑣′ = (
𝑣𝑒0

cos(𝛼0)
,

𝑣𝑒1

cos(𝛼1)
)

𝑇
 . This transformation can be computed with a minimum of computation 

by directly computing 𝑐𝑜𝑠(𝛼𝑖) by using the coordinates of the normal �̂�. In fact the angles between the normal vector 

and the plane (𝑒0, 𝑒1) in (𝑒0, 𝑒2) and (𝑒1, 𝑒2) are termed 𝛽0 and 𝛽1. We have the properties �̂�𝑒𝑖
 =  𝑐𝑜𝑠(𝛽𝑖) and 

𝑐𝑜𝑠(𝛽𝑖)  =  𝑠𝑖𝑛(𝛼𝑖) . By that, we have 𝑐𝑜𝑠(𝛼𝑖)  =  √1 − (�̂�𝑒𝑖
)

2
. In this process, we do not actually modify the 

coordinates of the vertices themselves but of a copy of them. The outcome of this refinement is the creation of sub-

triangulation generated and suppression of the original face. During the creation of a face 𝑓, if another face 𝑓′ with the 

same set of vertices already exists then the face tagged 𝜔𝐵 is discarded. Moreover if 𝑓′ has an opposed orientation to 

𝑓, the preserved face is tagged 𝜔𝐶 , otherwise it is tagged 𝜔𝐷. With these operations 𝐶𝐼𝑛𝑖𝑡𝐶𝑙𝑒𝑎𝑛𝑒𝑑  becomes 𝐶. 

 

 
Fig. 3.  Orthogonal projection in two-dimensional space. 

 

4. Classification 

 

After the previous steps, 𝐶 does not contain geometrical singularity; rather, it contains several edges with more than 

two adjacent faces. These non-manifold edges are the result of the instantiations of the non-coplanar intersections 

between the two input shells. Furthermore, as no bordering edge crosses the inner part of the surface (Section 2), the 

whole mesh of 𝐶 can be decomposed into OMCs (Fig. 2(b)). An OMC is a set of adjacent faces through normal edges. 

An edge 𝑒 is considered normal if and only if 𝑒 has exactly two adjacent faces 𝑓𝑎 and 𝑓𝑏 and the vertices of e are in 

opposite order in 𝑓𝑎 and 𝑓𝑏. These OMCs are inter-connected by subsets (or sequences) of non-manifold edges known 

as dividing lines. Two edges 𝑒𝑢 and 𝑒𝑣 sharing a vertex v are related to the same dividing line if for all adjacent faces 

𝑓(𝑒𝑢 ,𝑖) to 𝑒𝑢 there exists a succession of adjacent faces to 𝑣 connected by normal edges ending with a face adjacent to 

𝑒𝑣.  

These dividing lines can be closed or opened (Fig. 4). They are closed when all colliding edges are normal and 

opened either when the two vertices at the ends are the intersections between bordering edges or have more than two 

non-manifold edges in their neighbourhoods. All edges of a dividing line are adjacent to the same OMCs. By that, any 

edge of the line can represent the connections of the whole dividing line.  

The classification of the OMCs is achieved by using the geometry of adjacent faces of a random sampled edge e of 

each dividing line 𝐷𝐿𝑒 . The set of adjacent faces to 𝑒, termed 𝐹𝑒  =  {𝑓𝑖}, is such that firstly, no face is coplanar to 

another one and secondly, each face is a separation between the inside and outside of at least one of the input objects. 

These two properties enable the classification to be simplified as follows. Without loss of generality, we define an 

arbitrary orientation to 𝑒 and name this oriented edge 𝑒. Let 𝜏 be an orthogonal plane to 𝑒 (Fig. 5(a)). For all 𝑓𝑖  ∈

 𝐹𝑒 , its orthogonal projection in 𝜏 is computed. As 𝑓𝑖  and 𝜏 are orthogonal, the projection produces a vector 𝑡𝑖⃗⃗⃗. 

Defining an arbitrary 𝑡0⃗⃗⃗⃗  ∈  {𝑡𝑖⃗⃗⃗}, faces of 𝐹𝑒 are sorted in a cyclic order according to its counter-clockwise oriented 

angle 𝜃𝑖  =  ∡(𝑡0⃗⃗⃗⃗ , 𝑡𝑖⃗⃗⃗) in the plane 𝜏 oriented by 𝑒. The cyclic sequence of faces (or OMCs) is obtained by the sort 

termed 𝐹𝑒. All faces 𝑓𝑡𝑖⃗⃗⃗ ⃗ of 𝐹𝑒 are a transition between the inside and the outside of 𝐴 if 𝑓𝑡𝑖⃗⃗⃗ ⃗ is tagged 𝜔𝐴, of 𝐵 if 

𝑓𝑡𝑖⃗⃗⃗ ⃗ is tagged 𝜔𝐵 and of 𝐴 and 𝐵 if 𝑓𝑡𝑖⃗⃗⃗ ⃗ is tagged 𝜔𝐶  or 𝜔𝐷. 
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(a) Shells 𝐴 and 𝐵 are the discretization of the Trigonometric and Monkey saddle surfaces. All colliding lines are opened 

and end with collisions between bordering edges. 

 

(b) Shells 𝐴 and 𝐵 are the discretization of the Trigonometric and Partial sphere surfaces. All colliding lines are closed. 

 

Fig. 4.  Two examples of combinations of two meshes with a boundary. On the left and in the middle, the meshes result 

from the combination of 𝐶 with two points of view. Components of inputs 𝐴 and 𝐵 are rendered in blue and red 

and added vertices are in white. On the right, the decomposition into OMCs is rendered in different colours. 

 

 

 

  

(a) Computation of the 𝜃𝑖  angles. (b) Angle range classification using the 

faces of (a) and the sequence of tags 

(𝜔𝐴, 𝜔𝐵 , 𝜔𝐴, 𝜔𝐵). 

(c) Angle range classification using the 

faces of (a) and the sequence of tags 

(𝜔𝐴, 𝜔𝐴, 𝜔𝐵, 𝜔𝐵). 

Fig. 5.  Simple and classic examples of classification. Legend: (a) blue: outer side. (b)-(c) clear blue: tag 𝜔𝐴 or 𝛥𝐴, clear 

red: tag 𝜔𝐵 or 𝛥𝐵, white: 𝛥∪̅, and purple: 𝛥∩. 
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 

   

(d) Faces of 𝐶  with orientations that 

can be obtained by merging (a) with (b) 

or (a) with (c). (yellow-green: inside 

and blue: outside) 

(e) 𝐴 = (a) and 𝐵 = (b): example with 

a face (in yellow) issue of a coplanar 

collision between two opposed surfaces 

using the orientations of (d). 

(f) 𝐴 = (a) and 𝐵 = (c): example with 

a face (in green) issue of a coplanar 

collision between two twin surfaces 

using the orientations of (d). 

 

Fig. 6.  Examples of classifications with adjacent coplanar collisions. Legend: (a)-(d) blue: outer side, yellow-green: inner 

side. (e)-(f) clear blue: tag 𝜔𝐴 or 𝛥𝐴, clear red: tag 𝜔𝐵  or 𝛥𝐵 , yellow: tag 𝜔𝐶 , green: tag 𝜔𝐷 , white: 𝛥∪̅, and 

purple: 𝛥∩. 

 

Classification of the angle ranges. The cyclic sequence 𝐹𝑒 combined with the information of orientations and tags 

of faces enables the classification of angle ranges between each pair of faces of 𝐹𝑒. Let 𝛿 be a pair of Boolean values, 

where the first element represents the inside/outside of 𝐴 and the second this of 𝐵. 𝛿 is initialized with (−1, −1), 

where −1 means undetermined, 0 outside, and 1 inside. By traversing the sequence 𝐹𝑒, the values of 𝛿 changes as 

follows. The traversing of 𝑓𝑡𝑖⃗⃗⃗ ⃗ with:  

 a tag 𝜔𝐴 (respectively 𝜔𝐵) changes the first (respectively second) element of δ to 1 if the front of 𝑓𝑡𝑖⃗⃗⃗ ⃗ is 

oriented backward of the sequence 𝐹𝑒 or to 0 in the other sense.  

 a tag 𝜔𝐷 has the same effect than the tags 𝜔𝐴 and 𝜔𝐵 but modifies the both values (Fig. 6(e)).  

 a tag 𝜔𝐶 , such as the tag 𝜔𝐷, modifies both elements of δ. With the same effect than a tag 𝜔𝐴 for the first 

element, but has an opposite effect than the tag 𝜔𝐵 on the second element (Fig. 6(f)). 

The first traversal of 𝐹𝑒  initializes the values of 𝛿. A second traversal is required to classify the angle ranges 

between the pairs of faces of 𝐹𝑒. During the second pass, all changes inside/outside of 𝐴 or/and 𝐵 have to operate an 

actual change of the targeted value(s) of δ. Otherwise, the Boolean operation is not consistent. Moreover, during this 

second pass, each angle range is classified as: common outside 𝛥∪̅: if 𝛿 =  (0, 0), inside exclusive to 𝐴: 𝛥𝐴⊕  if 𝛿 =

 (1, 0), inside exclusive to 𝐵: 𝛥𝐵⊕  if 𝛿 =  (0, 1), and common inside 𝛥∩: if 𝛿 =  (1, 1). Applying the angle range 

classification on the example of Fig. 5(a), with the sequence (𝑓𝑡0⃗⃗⃗⃗⃗, 𝑓𝑡1⃗⃗⃗⃗⃗, 𝑓𝑡2⃗⃗⃗⃗⃗, 𝑓𝑡3⃗⃗⃗⃗⃗, [𝑓𝑡0⃗⃗⃗⃗⃗]) and:  

 𝑓𝑡0⃗⃗⃗⃗⃗  tagged 𝜔𝐴 , 𝑓𝑡1⃗⃗⃗⃗⃗  tagged 𝜔𝐵 , 𝑓𝑡2⃗⃗⃗⃗⃗  tagged 𝜔𝐴 and 𝑓𝑡3⃗⃗⃗⃗⃗  tagged 𝜔𝐵 the result is (𝛥∪̅, 𝛥𝐵⊕ , 𝛥∩, 𝛥𝐴⊕) 

(Fig. 5(b)).  

 𝑓𝑡0⃗⃗⃗⃗⃗  tagged 𝜔𝐴 , 𝑓𝑡1⃗⃗⃗⃗⃗  tagged 𝜔𝐴 , 𝑓𝑡2⃗⃗⃗⃗⃗  tagged 𝜔𝐵 and 𝑓𝑡3⃗⃗⃗⃗⃗  tagged 𝜔𝐵 the result is (𝛥∪̅, 𝛥𝐴⊕ , 𝛥∩, 𝛥𝐴⊕) 

(Fig. 5(c)). 

Classification of the oriented manifold components. Using the angle range classification 𝛥𝐴⊕ , 𝛥𝐵⊕, 𝛥∪̅ and 𝛥∩ 

and the expected Boolean operation union ∪, intersection ∩, differences 𝐴 − 𝐵 and 𝐵 − 𝐴 (Note: 𝐴 − 𝐵 =  𝐴⊕ and 

𝐵 − 𝐴 =  𝐵⊕) and the symmetric difference ⊕, the OMCs are classified in three classes according to the expected 

action to apply: Cpreserve, Creverse and Cremove. 𝛥⊕ is defined by 𝛥⊕  =  𝛥𝐴⊕  ∪ 𝛥𝐵⊕ . A Boolean operation 𝛬 is achieved 

by keeping only OMCs with the representative faces bordering a 𝛥𝛬 . If a face delimits a 𝛥𝛬  and has the backside 

oriented forward 𝛥𝛬 then its OMC is classified Cpreserve, if the side presented is the front side, its OMC component is 

classified Creverse and otherwise Cremove. With two exceptions, for 𝛥𝐵⊕  with a face tagged 𝜔𝐶 , the orientation of the face 

is inverted, and for 𝛥⊕ with a face is tagged 𝜔𝐶 , its OMC is systematically classified Cremove. Note: for simplification, 
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the difference Boolean operations can be operated by reversing faces of one of the input shells (converting 𝐴 to �̅� or 

𝐵 to �̅�). The difference Boolean operations are in this case: 𝐴 − 𝐵 =  𝐴 ∩ �̅� and 𝐵 − 𝐴 =  𝐵 ∩ �̅�. For example, 

applying this classification to the example in Fig. 5(b) results in the following:  

 with the ∪ operation, 𝑓𝑡0⃗⃗⃗⃗⃗ and 𝑓𝑡1⃗⃗⃗⃗⃗ are classified Cpreserve and 𝑓𝑡2⃗⃗⃗⃗⃗ and 𝑓𝑡3⃗⃗⃗⃗⃗ are classified Cremove.  

 with the ⊕ operation, 𝑓𝑡0⃗⃗⃗⃗⃗ and 𝑓𝑡1⃗⃗⃗⃗⃗ are classified Cpreserve and 𝑓𝑡2⃗⃗⃗⃗⃗ and 𝑓𝑡3⃗⃗⃗⃗⃗ are classified Creverse.  

 with the ∩ operation, 𝑓𝑡0⃗⃗⃗⃗⃗ and 𝑓𝑡1⃗⃗⃗⃗⃗ are classified Cremove and 𝑓𝑡2⃗⃗⃗⃗⃗ and 𝑓𝑡3⃗⃗⃗⃗⃗ are classified Cpreserve.  

 with the 𝐴⊕ operation, 𝑓𝑡0⃗⃗⃗⃗⃗ is classified Cpreserve, 𝑓𝑡1⃗⃗⃗⃗⃗ and 𝑓𝑡2⃗⃗⃗⃗⃗ are classified Cremove and 𝑓𝑡3⃗⃗⃗⃗⃗ is classified 

Cpreserve. 

In regard to with singular edges, if the initial meshes contain singular edges, these edges can create a dividing line 

without neighbouring OMC of both input meshes. For this case, all the OMCs connected to this dividing line are 

considered to be the same one. Note: if no 𝛥𝛬 is found around a dividing line and the tags of all adjacent faces are not 

exclusively 𝐴 or 𝐵, then all adjacent OMCs are classified Cremove. For example, the ∩ operation in Fig. 5(b) and the 

𝐴⊕ operation in Fig. 5(c) are empty.  

The classification of the OMCs is operated locally at the dividing lines. However, this classification in the global 

view can be inconsistent. That results in OMCs classified in different categories at different dividing lines. In that case 

the Boolean operation itself is not consistent. For example, Fig. 7 shows, by a 2D representation of the surfaces, an 

example in which all angle ranges and OMCs can be classified locally. However, the red OMC has different classifications 

at the dividing lines (e.g., for the ∪ operation the red component would be classified Cremove at the node on the right and 

Cpreserve at the node on the left).  

 

  

(a) Input shells 𝐴 (blue) and 𝐵 (red). (b) After remeshing in 𝐶 decomposition in OMCs. 

Fig. 7.  Example of inconsistent Boolean operation. 

 

The Boolean operation is performed by applying the classification strategy. The OMCs classified Cpreserve are 

preserved, those classified Creverse are reversed and those classified Cremove are removed. However, if an OMC is not 

connected to a 𝐷𝐿, it would not be classified in Cpreserve, Creverse or Cremove. That can occur when the models 𝐴 and 𝐵 

represent the same surface. Note: the case with an empty 𝐴 or 𝐵 is excluded by the input requirements. In this case the 

OMC can have only two tags 𝜔𝐶  or 𝜔𝐷. If the OMC is tagged 𝜔𝐶  (the surface of 𝐵 = the surface of 𝐴), the OMC is 

classified Cpreserve for the 𝐴⊕ operation (𝐴 − 𝐴 =  𝐴), Creverse for the 𝐵⊕ operation (𝐴 − 𝐴 =  𝐴) and Cremove otherwise 

(𝐴 ∪ 𝐴 =  𝐴 ⊕ 𝐴 =  ℝ3 and 𝐴 ∩ 𝐴 =  ∅). If the OMC is tagged 𝜔𝐷 (the surface of 𝐵 = the surface of 𝐴), the OMC 

is classified Cpreserve for the ∪ and ∩ operations (𝐴 ∪ 𝐴 =  𝐴 ∩ 𝐴 =  𝐴) and Cremove otherwise (𝐴 − 𝐴 =  𝐴 ⊕ 𝐴 =

 ∅). 

 

5. Experimental results & discussion 

 

The presented algorithm has been implemented in C++ using double precision and tested with several synthetic and 

acquired meshes with an i7-2620M 2.70GHz CPU with 8GB of memory. Computing time was checked in mono-threaded 

mode. Some synthetic meshes have been created to improve critical cases, i.e., coplanar collisions, singular edges existing 

in the input meshes, and singular edges created during the process. Other synthetic meshes have been tested to improve 

the algorithm for classic use in CAD. Its robustness has been assessed on acquired meshes by testing it on 3D laser scans 

and volumetric reconstructions with classic models and a real-use case. In the following, the tests presented have been 

selected to present a representative sample of these tests. The first test is a simple synthetic test that involves both types 

of coplanar collisions and two configuration of singular edges. One involved into the collision and another not. The 
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second test uses the classic model of the Bunny from the Stanford repository1, the Scanned sphere model (a 3D scan 

acquisition of a sphere) and an ico-sphere (a synthetic sphere twin of the acquired one). The third test is an application 

of Boolean operations in the surgical domain. It uses the different parts of a patient skull (Maxilla and Mandible) and a 

neutral splint used to obtain the negative of teeth that is used during the surgery to define different positions (Laurentjoye  

et al., 2014). Finally, the fifth test is an experiment in the CAD application of Boolean operations. By using a model 

composed of several shells with holes (Tron light cycle2), this model is separated into multiple groups without collision. 

These groups are combined by ∪ operations. When a Boolean operation is not consistent, shells are modified by a 

minimum to fit with the requirements of the algorithm. 

Simple test: Three cubes and U. For this test, the models 𝐴 and 𝐵 are Three cubes and U, respectively (Fig. 8(a)). 

The model Three cubes is composed of three cubes touching at the edges, creating singular edges and the model U wraps 

the central cube of the model 𝐴 creating multiple and various coplanar collisions (coplanar collisions with opposed 

orientations are in yellow Fig. 8(d) and coplanar collisions with the same orientation are in green see Fig. 8(e)). This test 

shows that non-manifold edges are managed as well if they are in the colliding line (such as the edge between the cube 

on the left and that in the middle) or not (such as the edge between the cube on the right and that in the middle).  
 

     

(a) Three cubes (𝐴 in blue) 

and U (𝐵 in red). 

(b) After computation and 

remeshing of intersections, 

𝐶 is obtained 

(c) 𝐴 −  𝐵 =  𝐴⊕. (d) 𝐵 −  𝐴 

 =  𝐵⊕. 

(e) 𝐴 ∩ 𝐵. 

Fig. 8.  Boolean operations between Three cubes (model 𝐴 in blue) and U (model 𝐵 in red). Legend: clear blue: tag 𝜔𝐴, 

clear red: tag 𝜔𝐵, yellow: tag 𝜔𝐶 , and green: tag 𝜔𝐷. 

 

3D laser scan: acquired sphere and synthetic sphere. The comparison of an acquired mesh with its virtual model 

is a common operation and can be visualized by operating the difference operations between the two models. The model 

acquired minus the synthetic one gives an over-estimation and in the other sense, an under-estimation. With this aim, the 

first test on 3D laser scan data proposes to use as model 𝐴 the sphere reconstructed from a 3D laser scan acquisition of 

a 3D printed synthetic ico-sphere of radius 20 mm and built by six subdivisions, named the Scanned sphere model 

(Fig. 9(a)) and as model 𝐵 its initial virtual model, named the ico-sphere model (Fig. 9(b)). The acquired model has 

been re-centred to be realigned with the virtual model. This test is challenging for Boolean operations because the 3D 

laser scan acquisition creates a mesh with widespread vertices that creates irregular triangulations. Moreover, the high 

accuracy of the 3D laser scan brings the surfaces of models 𝐴 and 𝐵 in close proximity (the distances between 𝐴 and 

𝐵 are in max +0.013/-0.014mm, in mean 0.001mm -0.002mm/+0.003mm and the standard deviation is 0.003mm). 

Because of that, during the processing, model 𝐶  is decomposed by several dividing lines that are the base of the 

classification of the presented algorithm. The result of difference operators is given in Fig. 9(c) and 9(d). The model 

Scanned sphere contains 98,304 faces and 49,154 vertices and the model ico-sphere contains 20,480 faces and 10,242 

vertices. The mean time to process the different operations is 24.386s for 22,582 colliding faces. Remark that, for all 

operations, the time variation is around 0.5s. However, to measure the impact of variation of the density of faces, in terms 

of processing time, on the different phases of the proposed algorithm, a comparison with different levels of subdivisions 

has been realized. The numerical results of this test are listed in Table 5. Observations: as expected, the cost in time of 

building the BVH, the computation of the intersections, and extraction of OMCs are linearly proportional to the number 

of input faces. However, the Boolean operation itself (classification and modifications) is also proportional to the number 

of input faces. In fact, the time required for classification is negligible compared to the modification time to remove 

unwanted faces and vertices. That confirms the efficiency of the classification of the OMCs by angles of one edge per 

dividing line.  

                                                           
1 http://graphics.stanford.edu/data/3Dscanrep/ 

2 http://tf3dm.com 
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(a) Scanned sphere. (b) ico-sphere. (c) 𝐴 −  𝐵 =  𝐴⊕. (d) 𝐵 −  𝐴 =  𝐵⊕. 

Fig. 9.  Difference operators between the Scanned sphere (model 𝐴 in blue) and the ico-sphere of six subdivisions 

(model 𝐵 in red). 

 

Table 1. Experimental results between the Scanned sphere model and the ico-sphere with different subdivisions and the 

Bunny. 

#subd.  |𝐹|  𝛥𝑇(𝑀)  𝛥𝑇(𝐵𝑉𝐻)  𝛥𝑇(𝐼)  #𝐶𝐹  𝛥𝑇(𝑅)  𝛥𝑇(𝑂𝑀𝐶)  #𝐷𝐿  𝛥𝑇(𝑂𝐵)  𝛥𝑇(𝐺)  

4  1280  1.099  3.884  4.286  5815  1.483  2.490  279  0.446  13.692  

5  5120  1.127  3.979  6.094  16163  3.092  4.541  615  1.172  20.011 

6  20480  1.395  4.058  7.625  22582  3.565  5.969  634  1.846  24.465  

7  81920  2.281  4.534  15.139  30103  5.460  8.306  609  2.931  38.658  

8  32768

0  

5.386  4.733  27.664  44713  8.167  14.133  612  6.266  66.355  

Model  |𝐹|  𝛥𝑇(𝑀)  𝛥𝑇(𝐵𝑉𝐻)  𝛥𝑇(𝐼)  #𝐶𝐹  𝛥𝑇(𝑅)  𝛥𝑇(𝑂𝑀𝐶)  #𝐷𝐿  𝛥𝑇(𝑂𝐵)  𝛥𝑇(𝐺)  

Bunny  69451  1.817  0.808  0.344  1080  0.993  2.701  1  1.917  8.586  

 

Legend: #subd.: number of subdivisions of the ico-sphere model, |𝐹|: number of faces of the ico-sphere model, 𝛥𝑇(𝑀): 

computing time in seconds of the creation of 𝐶𝐼𝑛𝑖𝑡𝐶𝑙𝑒𝑎𝑛𝑒𝑑 , 𝛥𝑇(𝐵𝑉𝐻): computing time in seconds of the creation of the BVH, 

𝛥𝑇(𝐼): computing time in seconds of the intersections, #𝐶𝐹: number of colliding faces, 𝛥𝑇(𝑅): computing time in seconds of 

the remeshing of the intersections, 𝛥𝑇(𝑂𝑀𝐶): computing time in seconds of the creation of OMCs and dividing lines, #𝐷𝐿: 

number of dividing lines created, 𝛥𝑇(𝑂𝐵) : computing time in seconds of the Boolean operation (classification and 

modifications), 𝛥𝑇(𝐺): global computing time in seconds. 

 

    

(a) 𝐴 ∪ 𝐵. (b) 𝐴 ∩ 𝐵. (c) 𝐴 −  𝐵 =  𝐴⊕. (d) 𝐵 −  𝐴 =  𝐵⊕. 

Fig. 10.  Boolean operations between the Bunny (model 𝐴 in blue) and the Scanned sphere (model 𝐵 in red). The 

yellow-green colour represents the backside of faces. 

 

3D laser scan: sphere and bunny. The tests with the spheres presented above aim to compare the result of a 3D 

laser scan acquisition and its virtual representation. For that, both models have to be closed. Experimentation with the 

proposed algorithm on two different 3D laser scan acquisitions with potential holes was carried out for this test by using 

10



2
© 2017 The Japan Society of Mechanical Engineers[DOI: 10.1299/jamdsm.2017jamdsm0041]

Charton, Laehyun kim and Youngjun kim,
Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.11, No.4 (2017)

the Scanned sphere of the previous test and the classic acquired model of Standard, the Bunny. The Bunny model is a 

hollow statue acquired by surface scan; thus, the reconstructed mesh contains holes. It contains exactly five holes of 

which four are under the feet and one under the head (Fig. 10)). The Bunny has been scaled and moved to place it on the 

Scanned sphere such that the four holes at the bottom are inside the sphere and the fifth under the head is outside. The 

processing times are presented in Table 5 and the results are shown in Fig. 10. The proposed algorithm produces the 

expected results as the holes of the Bunny model are preserved without modification of the meshes except in the colliding 

faces. The quality of the resulting mesh is similar with those realized by (Feito et al., 2013) or (Schifko et al., 2010) but 

these methods require closed shells as input. 

    

(a) Maxilla. (b) Mandible. (c) Splint. (d) Global positioning. 

    

(e) First difference. (f) 𝑆𝑝𝑙𝑖𝑛𝑡 −  𝑀𝑎𝑛𝑑𝑖𝑏𝑙𝑒. (g) Second difference. (h) (𝑆𝑝𝑙𝑖𝑛𝑡 −

 𝑀𝑎𝑛𝑑𝑖𝑏𝑙𝑒)  −  𝑀𝑎𝑥𝑖𝑙𝑙𝑎. 

Fig. 11.  Tests of Boolean operations in the context of surgical application. (The yellow-green colour represents the 

backside of faces.) 

 

Maxillofacial surgery: Maxilla, Mandible, and Splint. This third test under real conditions of use presents the 

application of the proposed method to the medical context. Boolean operations are an essential component in the recent 

application known as virtual surgery planning. For this experimentation, the building of an occlusal splint has been 

chosen. Using the Maxilla part (𝑀𝑎𝑥) (Fig. 11(a)) and the Mandible part (𝑀𝑎𝑛𝑑) (Fig. 11(b)) of the patient, a negative 

of the teeth is inserted in a neutral Splint (𝑆) (Fig. 11(c)). The negative of the teeth is made by the differences: (𝑆 −

 𝑀𝑎𝑛𝑑)  −  𝑀𝑎𝑥. The result of the first difference is given in Fig. 11(f) and that of the second one in the Fig. 11(h). The 

results presented in Table 5 show, as expected, that optimization of the BVH constrained in the common bounding box 

and containing only the smaller set of faces from 𝐴 or from 𝐵 allows a fast construction of the spatial partition tree 

and a fast computation of intersections as reaching only pairs composed of 𝐴 and 𝐵 potentially colliding. The global 

time of the operation 𝑆′ − 𝑀𝑎𝑥 is similar with that of the operations between the Scanned sphere and the ico-sphere 

with eight subdivisions. However, the number of faces used in both cases is not comparable. For the sphere, the time 

consumption is mainly by the phases of computation of intersections as the common bounding box is wide (both objects 

are sharing the same space) when for the operations in the medical application, the time consumption is essentially used 

by the construction of the OMCs and the construction of 𝐶𝐼𝑛𝑖𝑡𝐶𝑙𝑒𝑎𝑛𝑒𝑑 . This example shows the advantage to use a BVH 

containing only one of the two sets of faces intersecting the common bounding box against an octree containing both 

sets. For the operation 𝑆 − 𝑀𝑎𝑛𝑑, the computation time of the BVH is two times less than for the 𝑆∗ − 𝑀𝑎𝑛𝑑. The 

main difference between those two operations is that the 𝑆∗ contains the negative of faces of the Maxilla inserted in the 

Splint. This addition is comparable to the construction of the BVH with both sets of faces. Note: the symmetric operations 

show similar observation (𝑆 − 𝑀𝑎𝑥 and 𝑆′ − 𝑀𝑎𝑥). Moreover, the BVH data structure is on average lighter and faster 

than the octree (dos Santos et al., 2014). 
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Finally, the order of the Boolean operations is arbitrary ((𝑆 −  𝑀𝑎𝑛𝑑)  −  𝑀𝑎𝑥  or (𝑆 −  𝑀𝑎𝑥) −  𝑀𝑎𝑛𝑑) . 

Therefore, two orders were run to control the quality of the result of the proposed method. That gives 𝑆′′ =  (𝑆 −

 𝑀𝑎𝑛𝑑)  −  𝑀𝑎𝑥 and 𝑆∗∗  =  (𝑆 −  𝑀𝑎𝑥) −  𝑀𝑎𝑛𝑑. Theoretically, 𝑆′′ and 𝑆∗∗ represent the same discrete surface 

and 𝑆′′ ⊕ 𝑆∗∗  =  ∅. The result (Table 5) shows that the meshes of 𝑆′′ and 𝑆∗∗  are numerically different, but the 

intersection is empty. The expected result is reached.  

 

Table 2. Experimentation in virtual surgery planning application. 

Operation  𝛥𝑇(𝑀)

ΔT 

(M)  

𝛥𝑇(𝐵𝑉𝐻) 

ΔT (BVH)  

𝛥𝑇(𝐼)  #𝐶𝐹  𝛥𝑇(𝑅)  𝛥𝑇(𝑂𝑀𝐶) 

ΔT 

(OMC)  

#𝐷𝐿  𝛥𝑇(𝑂𝐵)  𝛥𝑇(𝐺)  

𝑆′ =  𝑆 − 𝑀𝑎𝑛𝑑  5.325  0.684  1.694  3536  2.735  6.332  12  1.090  17.865  

𝑆′′ =  𝑆′ − 𝑀𝑎𝑥  22.334  3.141  3.173  3637  11.485  27.145  34  3.580  70.864  

𝑆∗ =  𝑆 − 𝑀𝑎𝑥  20.679  2.270  3.146  3235  10.894  26.150  24  3.156  66.300  

𝑆∗∗ =  𝑆∗ − 𝑀𝑎𝑛𝑑  5.045  1.680  2.018  3950  3.061  7.403  22  1.504  20.717  

𝑆′′ ⊕ 𝑆∗∗  2.609  0.183  0.045  39  0.393  1.204  0  1.201  5.670  

Models information: 

𝑆: Splint (5,129 vertices, 10,216 faces and 0 holes). 

𝑀𝑎𝑛𝑑: Mandible (237,606 vertices, 475,412 faces and 0 holes). 

𝑀𝑎𝑥: Maxilla (1,021,179 vertices, 2,042,810 faces and 35 holes). 

𝑆′: result of 𝑆 −  𝑀𝑎𝑛𝑑 (20,893 vertices and 41,786 faces). 

𝑆∗: result of 𝑆 −  𝑀𝑎𝑥 (18,963 vertices and 37,934 faces). 

𝑆′′: result of 𝑆′ −  𝑀𝑎𝑥 (34,969 vertices and 69,990 faces). 

𝑆∗∗: result of 𝑆∗ −  𝑀𝑎𝑛𝑑 (34,974 vertices and 70,000 faces).  

𝑆′′ ⊕ 𝑆∗∗: 0 vertex and 0 face. 

𝑆′′ ∪ 𝑆∗∗: 34,976 vertices and 70,003 faces. 

Legend: 𝛥𝑇(𝑀): computing time in seconds of the creation of 𝐶𝐼𝑛𝑖𝑡𝐶𝑙𝑒𝑎𝑛𝑒𝑑, 𝛥𝑇(𝐵𝑉𝐻): computing time in seconds of the 

creation of the BVH, 𝛥𝑇(𝐼) : computing time in seconds of the intersections, #𝐶𝐹 : number of colliding faces, 𝛥𝑇(𝑅): 

computing time in seconds of the remeshing of the intersections, 𝛥𝑇(𝑂𝑀𝐶): computing time in seconds of the creation of 

OMCs and dividing lines, #𝐷𝐿 : number of dividing lines created, 𝛥𝑇(𝑂𝐵): computing time in seconds of the Boolean 

operation (classification and modifications), 𝛥𝑇(𝐺): global computing time in seconds.  

 

CAD: Tron light cycle. This last test is a CAD application with the particularity that we start from an existing mesh 

model that was initially designed for rendering and is not an object. This model is the Tron light cycle. It is composed of 

11,061 vertices, 20,964 faces, and 141 shells, and it contains 117 holes. The main idea of this experience is to use the 

singularity of the proposed method to process non-manifold edges and shells with boundary edges to perform the 

construction of the represented object with a minimum of modifications. For that the error detection of the proposed 

method is used to guide the user to solve the errors of inconsistency. In the first step, the whole model is decomposed 

into height sets of shells without inner collision in each set. These sets are named 𝑆𝑒𝑡 𝐴, 𝑆𝑒𝑡 𝐵, . . ., and 𝑆𝑒𝑡 𝐻. The 

fusion of these sets is achieved by the ∪ operator with a preservation of shells that are not colliding. For all errors of 

consistence of the Boolean operation, faces have been added to solve the problem targeted by the algorithm. During the 

fixing process, 84 small holes have been filled and two pieces of surface have been offset to solve non-manifold edges 

with odd adjacent faces. After these modifications, the model is composed of 12,154 vertices, 23,580 faces, and contains 

30 holes. Figures 12(a)-(h) show the 𝑆𝑒𝑡 𝐴 to 𝐻 after these modifications and Fig. 13 shows the difference steps 

between each ∪ operation. After removing small shells, the resulting mesh is composed of 17,298 vertices, 35,040 faces, 

and two shells. The main shell and the engine part (Fig. 12(h)). There also remain six small holes which are opened to 

the outside of the main shell.  

This test is meaningful because the input model contains several coplanar and nearly coplanar collisions (Fig. 13(h)), 

holes, and edge contacts that are challenging for existing Boolean operation algorithms to preserve a consistent topology 

after operations. When we performed this test with the proposed algorithm, we did not encounter any problem except the 

initial problems of inconsistency of the Boolean operations due to the geometry of the initial mesh. However, the series 

of operations has created 56 non-manifold edges due to edge collisions. This configuration combines at once the problems 

of shells with holes and non-manifoldness of edges that can be separately solved by existing methods. 
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(a) 𝑆𝑒𝑡 𝐴. (b) 𝑆𝑒𝑡 𝐵. (c) 𝑆𝑒𝑡 𝐶. (d) 𝑆𝑒𝑡 𝐷. 

    

(e) 𝑆𝑒𝑡 𝐸. (f) 𝑆𝑒𝑡 𝐹. (g) 𝑆𝑒𝑡 𝐺. (h) 𝑆𝑒𝑡 𝐻. 

Fig. 12. Sets of shells of the Tron light cycle model without collision after minimal modifications to allow Boolean 

operations. (The yellow-green colour represents the backside of faces.) 

    

(a) 𝑆𝑒𝑡 𝐴 ∪  𝑆𝑒𝑡 𝐵. (b) 𝑆𝑒𝑡 𝐴 ∪  𝑆𝑒𝑡 𝐵 ∪

 𝑆𝑒𝑡 𝐶. 

(c) 𝑆𝑒𝑡 𝐴 ∪  𝑆𝑒𝑡 𝐵 ∪

 𝑆𝑒𝑡 𝐶 ∪  𝑆𝑒𝑡 𝐷. 

(d) 𝑆𝑒𝑡 𝐴 ∪  𝑆𝑒𝑡 𝐵 ∪ . ..  ∪

 𝑆𝑒𝑡 𝐸. 

   

 

(h) Back face rendering of 

𝑆𝑒𝑡 𝐴 ∪  𝑆𝑒𝑡 𝐵 ∪ . . .∪

 𝑆𝑒𝑡 𝐺. In orange, nearly 

coplanar faces creating tight 

empty spaces (tunnels) 

during the fusion. 

(e) 𝑆𝑒𝑡 𝐴 ∪  𝑆𝑒𝑡 𝐵 ∪ …  ∪

 𝑆𝑒𝑡 𝐹. 

(f)  𝑆𝑒𝑡 𝐴 ∪  𝑆𝑒𝑡 𝐵 ∪ …  ∪

 𝑆𝑒𝑡 𝐺. 

(g) 𝑆𝑒𝑡 𝐴 ∪  𝑆𝑒𝑡 𝐵 ∪ … ∪

 𝑆𝑒𝑡 𝐻. 

Fig. 13. Merging of the sets of non-colliding shells of the Tron light cycle model. (The yellow-green colour represents the 

backside of faces.) 

6. Conclusion 

 

This paper presents a method for Boolean operations (union, intersection, differences, and symmetric differences) 

between two colliding shells. This method is based on two main steps: merging of inputs and classification of the OMCs 

using one edge of each dividing line. This method, unlike existing methods, has demonstrated its capabilities to handle 

topological problems such as holes and non-manifold edges and large meshes (e.g., over two million faces for the Maxilla 

model). These capabilities have been demonstrated on specialized synthetic tests, medical data, 3D laser scan 

acquisitions, and CAD applications. The maxillofacial surgery test firstly shows the efficiency of the BVH data structure 

built with a minimal subset of faces from one of both of the input shells (𝐴 and 𝐵) to reach the potential colliding pairs 

of faces between 𝐴 and 𝐵 ; secondly, it shows the quality of its results in terms of experimentally reproducing a 

theoretical result (((𝑆 −  𝐷)  −  𝑋)  ⊕  ((𝑆 −  𝑋)  −  𝐷)  =  ∅). As future work, we plan to extend this method to 

compute floating shells (bodies) as well as colliding shells. This method is expected to preserve the flexibility and 

robustness. 
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